Forward looking statements

This presentation includes forward-looking statements that involve substantial risks and uncertainties. All statements included in this presentation, other than statements of historical facts, are forward-looking statements. Forward-looking statements include statements about the potential benefits of products based on Catalyst’s engineered protease platform; potential markets for and advantages of MarzAA and DalcA; plans in Q4 2020 to enroll a pivotal Phase 3 registration study of MarzAA, initiate a Phase 1/2 trial in FVII Deficiency, Glanzmann Thrombasthenia, and patients treated with Hemlibra and initiate a pivotal non-human primate study of CB 2679d-GT; the potential for MarzAA and DalcA to effectively and therapeutically treat hemophilia subcutaneously; potential markets for our anticomplement and gene therapy programs; potential payments from Biogen; plans to declare a development candidates in our systemic complement program in Q4 2020; the superiority of CB 2679d-GT over other gene therapy candidates; and the Company’s collaboration with Biogen for the development and commercialization of pegylated CB 2782 for the potential treatment of geographic atrophy-associated dry age-related macular degeneration (AMD). Actual results or events could differ materially from the plans, intentions, expectations and projections disclosed in the forward-looking statements.

Various important factors could cause actual results or events to differ materially, including, but not limited to, the risk that trials and studies may be delayed as a result of the novel coronavirus (COVID-19) outbreak and other factors, that trials may not have satisfactory outcomes, that additional human trials will not replicate the results from earlier trials, that potential adverse effects may arise from the testing or use of DalcA or MarzAA, including the generation of neutralizing antibodies, which has been observed in patients treated with DalcA, the risk that costs required to develop or manufacture the Company’s products will be higher than anticipated, including as a result of delays in development and manufacturing resulting from COVID-19 and other factors, the risk that Biogen will terminate Catalyst’s agreement, competition and other risks described in the “Risk Factors” section of the Company’s quarterly report filed with the Securities and Exchange Commission on August 6, 2020, and in other filings with the Securities and Exchange Commission. The Company does not assume any obligation to update any forward-looking statements, except as required by law.
Catalyst Biosciences – Protease medicines

Protease engineering platform

Late-stage asset
- SQ Marzeptacog alfa (activated)
- MarzAA (FVIIa)
- Phase 3 in 2020

Hemophilia
- SQ MarzAA (FVIIa)
- SQ Dalcinonacog alfa – DalcA (FIX)
- Factor IX Gene Therapy
- Factor Xa

Complement
- IVT Anti-C3 Dry AMD CB 2782-PEG
- SQ Systemic Complement Inhibitors
Harnessing the catalytic power of proteases

One protease molecule activates or inactivates 1000s of target molecules

An adaptable protease platform

- Functionally enhanced natural proteases (FVIIa, FIX)
- Engineered novel protein degraders (Anti-C3)
- Extended half-life variants
- Increased potency
- Proven efficacy of clinical stage assets

Advantages

- Quick & simple SQ dosing for systemic use
- Less frequent intravitreal dosing in ophthalmology
- Low vector dose gene therapy constructs
- Ideal for high concentration drug targets or controlling amplification cascades
Pipeline

Hemostasis

- **SQ Marzeptacog alfa "MarzAA"** – (rFVIIa)
 - Hem A or B w/ Inh – ToB

- **FVIIID/Glanzmann/Hemlibra** – ToB

- **SQ Dalcinonacog alfa “DalcA”**
 - Hem B (rFIX)

- **FIX-Gene Therapy**
 - Hem B (CB 2679d-GT)

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>PC</th>
<th>P1/2</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQ Marzeptacog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alfa "MarzAA"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(rFVIIa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem A or B w/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inh – ToB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**FVIIID/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glanzmann/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemlibra –</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**SQ Dalcino-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nonacog alfa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“DalcA”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem B (rFIX)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**FIX-Gene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem B (CB 2679d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- GT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complement

- **IVT CB 2782-PEG**
 - Anti-C3 protease for Dry AMD

- **SQ systemic complement inhibitors – CB DC**

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>PC</th>
<th>P1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVT CB 2782-PEG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-C3 protease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for Dry AMD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**SQ systemic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>complement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inhibitors –</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB DC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Investment highlights

- **Novel subcutaneous factors with orphan drug designation, MarzAA & DalcA** – P2 efficacy in prophylaxis studies complete
- **Anti-C3 Dry AMD with Biogen SQ systemic complement regulator research program**
- **Multibillion-dollar market opportunities**
- **Experienced team**
- **Strong balance sheet, $117.4 M cash – Q2**
- **177 worldwide patents CBIO retains full ownership of all compounds**
Addressing unmet needs in rare bleeding disorders

SQ treatment of episodic bleeding and prophylaxis – $4B+ market

MarzAA & DalcA

Hemophilia A w/ Inhibitors

Hemophilia B w/ Inhibitors

Hemophilia B

Prophylaxis

Hemophilia A

Factor VII Deficiency

Acquired Hemophilia

Glanzmann Thrombasthenia

© Catalyst Biosciences
Marzeptacog alfa (activated): MarzAA rFVIIa
Addresses a clear unmet need in hemophilia & other bleeding disorders

Four amino acid substitutions
+ Multiple advantages over NovoSeven RT
+ 9-fold higher activity vs NovoSeven RT
+ Potency allows for SQ dosing

Only SQ bypass agent for on demand treatment
+ Small volume SQ administration
+ Improved bioavailability
+ Prolonged half-life

Orphan Drug Designation in US and EU
MarzAA Phase 2 demonstrates efficacy with daily prophylaxis

+ Greater than 90% reduction in all bleeding – Median ABR = 0
+ 7 of 9 subjects had no bleeding at final dose level
+ Safe & well tolerated, ~1% ISR (6/517 doses) & no ADA

Annualized bleed rate

n = 9

- 6 m pre-treatment: 19.8
- On treatment: 1.6, p = 0.009

Proportion of days with bleeding

n = 9

- 6 m pre-treatment: 12.3%
- On treatment: 0.8%, p = 0.009

Mahlangu et al. EAHAD 2020

© Catalyst Biosciences
Current bypass agents require multiple IVs over the course of hours

Patients identify a need for an easy to administer treatment to stop bleeds quickly

Patients reported needing an average of 6 hours and 3 injections of NovoSeven to resolve bleeds, with certain bleeds requiring up to or longer than 72 hours to resolve bleeding episodes.1,2,3

“"I have trouble securing a vein for IV administration due to the fact that my veins are very scarred from years of IV injections. My veins are prone to collapse.”

- Hemophilia Patient

“Wish we could do [treatment of a bleed] via something outside of IV, we would love the convenience of a subcutaneous administration.”

- Hemophilia Patient

Source: 1NovoSeven PI Rev 7/2020; 2Adivo Associates market research; 3Catalyst Biosciences market research. Data on file

© Catalyst Biosciences
SQ treatment of a bleed is a large commercial opportunity

Global NovoSeven sales breakdown by indication (2019)

- $578M
- $263M
- $93M
- $63M
- $139M
- $81M
- $263M
- $1.22B

SQ MarzAA has a superior profile

- Faster & easier to administer vs N7 dosed every 2 hours IV
- MarzAA half-life ~8x longer than N7
- 9-fold higher activity vs N7
- Potential to reduce rebleeding
- Stops bleeding in multiple preclinical models
- Can be combined with Hemlibra
 - in vitro without increased thrombogenicity
- Potential for prophylaxis
- Ideal for pediatrics and patients with venous access issues

Source: Adivo Associates market research; Catalyst Biosciences market research. Data on file
MAA-102: PK MarzAA levels support SQ treatment of a bleed

+ Target of 24-120 ng/mL to treat a bleed is based on continuous infusion levels of NovoSeven for surgery
+ Target levels are rapidly achieved
+ 25% and 50% of C_{max} at 1 and 2 hours, respectively
+ Dose-proportional increases in C_{max} and AUC
+ Target levels can be maintained for 18 hours with a single SQ dose of 60 μg/kg
+ Multiple dosing cohorts completed
 - 60 μg/kg every 3 hours; twice and thrice
+ No ADA

[Graph showing MarzAA levels over time for different dosing regimens: 60 μg/kg SQ 3x, 60 μg/kg SQ 2x, 60 μg/kg SQ 1x.]

24 ng/mL

© Catalyst Biosciences
Crimson 1 Phase 3 study: Treatment of episodic bleeding
Hemophilia A or B with inhibitors

- **Primary endpoint**
 Non-inferior hemostatic efficacy: standard 4-point scale

- **Secondary endpoints**
 Time to bleed resolution; number of doses; rescue meds

- **Safety**
 Adverse events, anti-drug antibodies (ADA); thrombosis

- **Statistics**
 - SOC estimate 85%
 Excellent/good treatment of bleeds
 - Non-inferiority margin of 12%
 - 2.5% significance, one-sided
 - 90% power

N = 30

MarzAA SQ
60 µg/kg
1-3 doses

≤5 bleeds per patient

130 bleeds per sequence

SOC IV
1-3 doses

≤5 bleeds per patient

130 bleeds per sequence

SOC IV
1-3 doses

≤5 bleeds per patient

114 bleeds per sequence

MarzAA SQ
60 µg/kg
1-3 doses

≤5 bleeds per patient

114 bleeds per sequence
MAA-202 Phase 1/2 study design

FVII deficiency, Glanzmann thrombasthenia and HA on Hemlibra: N = 8 each

Phase 1 PK
- MarzAA IV
each cohort
- Single dose
- MarzAA SQ
- Single dose escalation
- Multiple dose Q3H

Phase 2 ToB
- MarzAA SQ
 1-3 doses
- FVIID ≥30 bleeds
- GT ≥30 bleeds
- HA ≥15 bleeds

Phase 1
- Primary endpoints:
 Pharmacokinetics
- Secondary endpoints:
 Pharmacodynamics

Phase 2 ToB
- Primary endpoints:
 Hemostatic efficacy at 24 hours
- Secondary endpoints:
 Effective hemostasis at successive timepoints; doses needed; rescue meds
- Safety:
 Adverse events and ADA
MarzAA clinical development plan for treatment of bleeds

Large commercial opportunity across multiple rare bleeding disorders

- Initiate P3 Crimson 1 study in Q4 2020
- HA/HB with inhibitors

- Initiate P1/2 study MAA 202 in Q4 2020
- FVII deficiency, Glanzmann thrombasthenia, Hemlibra breakthrough bleeds

- Data expected in 2021 & 2022
Dalcinonacog alfa: novel FIX replacement for SQ delivery

Three amino acid substitutions
- Increased catalytic activity
- Higher affinity for FVIIIa
- Resistance to antithrombin inhibition
- 22-fold increased potency vs BeneFIX

Differentiated from marketed IV FIXs
- Small volume SQ administration
- Enhanced pharmacokinetics with prolonged half-life
- Excellent extravascular distribution
- Potential to maintain continuous protective levels

Orphan drug designation in US & EU

© Catalyst Biosciences
Dalcinonacog alfa Phase 2b SQ clinical trial

Trial completed

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>DalcA IV</td>
<td>50 IU/kg</td>
</tr>
<tr>
<td>DalcA SQ</td>
<td>100 IU/kg</td>
</tr>
</tbody>
</table>

Endpoint achieved with steady state FIX activity levels >12%

- Initial 35 min post-IV
- Daily SQ dosing to Day 28
- Wash-out

Daily FIX activity levels measured for 5 days

+ Primary endpoint: Steady state FIX activity level above 12% with daily dosing
+ Secondary endpoints: safety including weekly ADA testing, pharmacokinetics, pharmacodynamics, bleeding events
+ 6 severe Hemophilia B subjects dosed
+ Rare propeptide mutation excluded
+ HLA profile associated with nAb risk was excluded
DalcA P2b demonstrated proof of safety and efficacy

Target levels >12% achieved with 100 IU/kg dosing for 28 days

+ Dosed 6 severe HB subjects
 - Subject 102 withdrew on Day 7
+ Steady state FIX levels up to 27% achieved after 14 days
+ No breakthrough bleeds
+ No neutralizing ADAs
+ Consistent PK profiles
+ Terminal half-life is 2.5 - 5.1 days
Dalcinonacog alfa

Potential to provide effective SQ prophylaxis for individuals with Hemophilia B

- Phase 2b trial complete
- Protective therapeutic FIX activity levels achieved
- No bleeding events during treatment indicates effective prophylaxis
- No SAEs, systemic hypersensitivity, nAb
- Mild to moderate ISR primarily with initial injections – transient & self-limiting
- Long half-life – potential for lower dose/reduced dosing frequency
Catalyst’s CB 2679d - gene therapy

Limitations of 1st generation GTs create an opportunity

AAV serotype
- High vector doses needed to achieve stable expression
- Preexisting neutralizing antibodies to the capsids limit efficacy & eligible patients
- Variable tissue tropism can limit effectiveness

Durability
- FIX transgenes encode the Padua high-activity FIX variant
- Gene therapies have yet to demonstrate durable and clinically meaningful FIX expression 5 years post-infusion
- FIX activity has decreased over time
CB 2679d-GT for hemophilia B

Engineered Capsid + **Novel Transgene** = **Lower AAV Dose**

- **CB 2679d-GT** has a superior profile vs. Padua in preclinical studies
 - Stable high activity levels with a vector dose reduced 10-fold in a mouse hemophilia B model
 - 4 to 5-fold reduction in bleeding time when compared to the Padua transgene in mice
 - Potential for an improved efficacy & safety

<table>
<thead>
<tr>
<th>FIX Transgene</th>
<th>AAV Capsid</th>
<th>Study Dose (vg/kg)</th>
<th>FIX Activity (U/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB 2679d-GT</td>
<td>Novel Chimeric</td>
<td>8.0x10^{10}</td>
<td>20</td>
</tr>
<tr>
<td>Padua</td>
<td>TAK-748*</td>
<td>7.4x10^{11}</td>
<td>20</td>
</tr>
<tr>
<td>Padua</td>
<td>TAK-748*</td>
<td>7.4x10^{10}</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Achieved high initial FIX levels in NHPs**
 - Presented at World Federation of Hemophilia Virtual Summit 2020 (June 19, 2020)
 - Additional vector optimization & dose ranging studies ongoing

- **Wholly-owned & issued patents covering gene therapy**
Targeting complement – a pathway regulated by proteases

Dysregulated complement activity is associated with a broad range of disorders and a logical fit for our protease platform.

Classical pathway
- Antigen antibody complexes
- C3
- C3a

Lectin pathway
- Pathogen surfaces
- C3
- C3b
- C5
- C5a

Alternate pathway
- Activating surfaces and C3 tick-over
- CB 2782-PEG
 - Targeting C3 blocks downstream complement

Diseases
- Autoimmune diseases
- Inflammatory diseases
- Multiple rare diseases

© Catalyst Biosciences
CB 2782-PEG: Complement factor 3 (C3) cleaving protease

Geographic atrophy in dry AMD can result in blindness

+ Geographic atrophy is an advanced stage of dry age-related macular degeneration (dAMD)
+ Dry AMD affects ~1M people in the US and over 5M worldwide
+ Global market estimated at >$5B
+ C3 is the only clinically (randomized P2) validated target for the treatment of dAMD
+ No currently approved therapy

CB 2782-PEG long acting anti-C3 protease

Best-in-class anti-C3 profile for dry AMD with dosing every 3 to 4 months

Predicted >90% elimination of C3 at 4 months
Best-in-class anti-C3 profile for dry AMD

+ Generated from Catalyst’s proprietary protease engineering platform
+ Potent, selective and long acting anti-C3 protease that degrades C3 into inactive fragments
+ Preclinical NHP PK & PD data* predict best-in-class human intravitreal dosing three or four times a year

Biogen collaboration

+ Announced December 19, 2019
+ $15M upfront, up to $340M in milestones and tiered royalties up to low double digits
+ Catalyst to perform fully funded pre-clinical and manufacturing activities
+ Biogen responsible for IND-enabling activities, worldwide clinical development & commercialization

*Furfine et al. ARVO 2019

© Catalyst Biosciences
Expanding the complement portfolio

- Leverages Catalyst’s proprietary protease engineering platform
- Designed for SQ administration & improved bioavailability
- Simple & efficient production process
- Program update in Q4

CB 4332 SQ long-acting systemic complement regulator

Non-human primate PK supports weekly SQ dosing in humans
Milestones – 2020

<table>
<thead>
<tr>
<th>Q1 2020</th>
<th>Q2 2020</th>
<th>Q3 2020</th>
<th>Q4 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>EoP2</td>
<td>ToB PK/PD</td>
<td>MAA-102 data</td>
<td>Enroll pivotal P3</td>
</tr>
<tr>
<td>Interim P2b</td>
<td>Final P2b</td>
<td>Population PK</td>
<td>Initiate P1/2 in FVII deficiency, Glanzmann Thrombasthenia, and Hemlibra patients</td>
</tr>
<tr>
<td>NextGen vector</td>
<td>NHP efficacy</td>
<td></td>
<td>Initiate pivotal NHP study</td>
</tr>
</tbody>
</table>

Development candidates:
- MarzAA (FVIIa)
- DalcA (FIX)
- CB 2679d-GT (FIX gene therapy)
- CB 2782-PEG (dAMD)
- CB DC (Systemic complement)
Team

Nassim Usman, Ph.D.
President & CEO

28 years in biotech

Grant Blouse, Ph.D.
SVP Translational Research

13 years in biotech

Clinton Musil, M.B.A
Chief Financial Officer

16 years in biotech & investing/banking

Jeffrey Landau, M.B.A.
SVP Business Development

18 years in biotech

Howard Levy, M.B.B.Ch., Ph.D.
Chief Medical Officer

20 years in hematology

Anju Chatterji, Ph.D.
SVP Biologics Development & Manufacturing

19 years in biotech
Summary

Disruptive approach to billion-dollar markets – protease engineering platform

FVIIa: SQ MarzAA ~$2.2B market
+ P1 PK/PD & preclinical data supports ToB
+ P2 efficacy & safety demonstrated
+ P3 patient enrollment in Q4 2020

FIX: SQ DalcA >$1.8B market
+ Phase 2b efficacy & safety demonstrated
+ Potential for less frequent dosing

FIX Gene Therapy: CB 2679d-GT
+ Proprietary preclinical gene therapy asset with superior activity vs current clinical constructs with lower doses

Anti-C3 dAMD: IVT CB 2782-PEG >$5B market
+ Biogen collaboration
+ $15M upfront, up to $340M in milestones, up to low double digits tiered royalties

SQ systemic complement inhibitor program
+ Large $B+ rare-disease opportunity
+ Multiple indications & applications
+ 1st development candidate in Q4 2020

Well capitalized
+ Cash runway into 2022